Wednesday, 25 July 2012

Greatest Integer Function

In the previous post we have discussed about How to Deal with Ordered Pair Problems and In today's session we are going to discuss about Greatest Integer Function. 

Greatest Integer Function gives the highest integer number that is lies among the several numbers. We can also simplify the statement as ,it will give the highest number and all other number are lesser or equal to the given number. Sometimes we call the floor function of integer numbers. It will be expressed by a big bracket as[ ].
We can explain it is the process of finding number that have less than and equal value among the given number for a given integer value. So according to the definition of greatest integer function that is stated for the integer number will provide the number equal to the given number. When we find the greatest integer and when we find for any non integer number then in that case it will give only the integer part of that number and remove the decimal part. (know more about Greatest Integer Function, here)
We define it by some examples as, Find the greatest integer function of 7?
Solution: [7] = 7.
Explanation: As the given number is an integer number, hence the closest integer number to the left of the given number is the same number.
Find the greatest integer function of 4.7?
Solution: [4.7] = 4
Explanation: As the closest integer number to the left of the given number on the number line is 4.
 Find the greatest integer function of -3.4?
Solution: [-3.4] = -4,
Explanation: As the closest integer number to the left of the -3.4 is -4
According to Van Der Waals Equation, it states for composition of fluid that made by the particles that have a non zero volume and also for a pair wise inter particle force that is an attractive force .
Cbse Sample Papers 2013 provided by the central board of secondary education to the students for help them in preparation of examination.

No comments:

Post a Comment